Redis如何避免单线程模型的阻塞
如何避免单线程模型的阻塞?
Redis 实例有哪些阻塞点?
和客户端交互时的阻塞点
第一个阻塞点:集合全量查询和聚合操作。
键值对的增删改查操作是 Redis 和客户端交互的主要部分,也是 Redis 主线程执行的主要任务。所以,复杂度高的增删改查操作肯定会阻塞 Redis。
第二个阻塞点:集合元素的删除。
释放内存只是第一步,为了更加高效地管理内存空间,在应用程序释放内存时,操作系统需要把释放掉的内存块插入一个空闲内存块的链表,以便后续进行管理和再分配。如果一下子释放了大量内存,空闲内存块链表操作时间就会增加,相应地就会造成 Redis 主线程的阻塞。
第三个阻塞点:清空数据库。
既然频繁删除键值对都是潜在的阻塞点了,那么,在 Redis 的数据库级别操作中,清空数据库(例如 FLUSHDB 和 FLUSHALL 操作)必然也是一个潜在的阻塞风险,因为它涉及到删除和释放所有的键值对。
和磁盘交互时的阻塞点
第四个阻塞点:AOF 日志同步写。
Redis 直接记录 AOF 日志时,会根据不同的写回策略对数据做落盘保存。如果有大量的写操作需要记录在 AOF 日志中,并同步写回的话,就会阻塞主线程了。
主从节点交互时的阻塞点
对于从库来说,它在接收了 RDB 文件后,需要使用 FLUSHDB 命令清空当前数据库,这就正好撞上了刚才我们分析的第三个阻塞点。
并且加载 RDB 文件就成为了 Redis 的第五个阻塞点。
切片集群实例交互时的阻塞点
如果你使用了 Redis Cluster 方案,而且同时正好迁移的是 bigkey 的话,就会造成主线程的阻塞,因为 Redis Cluster 使用了同步迁移。
我们来总结下刚刚找到的五个阻塞点:
- 集合全量查询和聚合操作;
- bigkey 删除;
- 清空数据库;
- AOF 日志同步写;
- 从库加载 RDB 文件。
解决方案
为了避免阻塞式操作,Redis 提供了异步线程机制。
但是如果是关键路径的操作,例如读必须及时的返回结果,就不能使用异步解决。
而我们刚才总结的第二个阻塞点“bigkey 删除”,和第三个阻塞点“清空数据库”,都是对数据做删除,并不在关键路径上。因此,我们可以使用后台子线程来异步执行删除操作。
对于第四个阻塞点“AOF 日志同步写”来说,为了保证数据可靠性,Redis 实例需要保证 AOF 日志中的操作记录已经落盘,这个操作虽然需要实例等待,但它并不会返回具体的数据结果给实例。所以,我们也可以启动一个子线程来执行 AOF 日志的同步写,而不用让主线程等待 AOF 日志的写完成。
从库要想对客户端提供数据存取服务,就必须把 RDB 文件加载完成。所以,这个操作也属于关键路径上的操作,我们必须让从库的主线程来执行。
异步的子线程机制
Redis 主线程启动后,会使用操作系统提供的 pthread_create 函数创建 3 个子线程,分别由它们负责 AOF 日志写操作、键值对删除以及文件关闭的异步执行。
异步的键值对删除和数据库清空操作是 Redis 4.0 后提供的功能,Redis 也提供了新的命令来执行这两个操作。
键值对删除:当你的集合类型中有大量元素(例如有百万级别或千万级别元素)需要删除时,我建议你使用 UNLINK 命令。
清空数据库:可以在 FLUSHDB 和 FLUSHALL 命令后加上 ASYNC 选项,这样就可以让后台子线程异步地清空数据库。
总结
最后,我想再提一下,集合全量查询和聚合操作、从库加载 RDB 文件是在关键路径上,无法使用异步操作来完成。对于这两个阻塞点,我也给你两个小建议。
- 集合全量查询和聚合操作:可以使用 SCAN 命令,分批读取数据,再在客户端进行聚合计算;
- 从库加载 RDB 文件:把主库的数据量大小控制在 2~4GB 左右,以保证 RDB 文件能以较快的速度加载。
对于Redis的优化,主要在于两个点:
- 降低对主线程的阻塞
- 节省内存